Реферат По Теме Магнитное Поле
Магнитное поле Земли Магнитное поле Земли Механизм возникновения, предложения по его экспериментальной проверке и использованию Существует ряд гипотез, объясняющих возникновение магнитного поля Земли. В последнее время получила развитие теория, связывающая возникновение магнитного поля Земли с протеканием токов в жидком металлическом ядре. Подсчитано, что зона, в которой действует механизм «магнитное динамо» находится на расстоянии 0,25.0,3 радиуса Земли 1. Следует заметить, что гипотезы, объясняющие механизм возникновения магнитного поля планет, довольно противоречивы и до настоящего времени экспериментально не подтверждены. Что касается магнитного поля Земли, то достоверно установлено, что оно чутко реагирует на солнечную активность. В то же время вспышка на Солнце не может оказать заметного влияния на ядро Земли.
- Реферат По Теме Магнитное Поле
- Реферат На Тему Магнитное Поле И Его Графическое Изображение
- Реферат На Тему Магнитное Поле Планет Солнечной Системы
С другой стороны, если связывать возникновение магнитного поля планет с токовыми слоями в жидком ядре, то можно сделать заключение, что планеты солнечной системы, имеющие одинаковое направление вращения, должны иметь одинаковое направление магнитных полей. Так Юпитер, вращающийся вокруг своей оси в ту же сторону что и Земля, имеет магнитное поле направленное противоположно земному. Предлагается новая гипотеза о механизме возникновения магнитного поля Земли и установка для экспериментальной проверки. Схема взаимодействия Солнце-Земля: (–) – поток заряженных частиц; Ic – ток Солнца; Iз – круговой ток Земли; Мв – момент вращения Земли; ω – угловая скорость Земли; Фз – магниный поток, создаваемый полем Земли; Фс – магнитный поток, создаваемый током солнечного ветра. На рис.1 изображена схема Солнце-Земля.
Наблюдения за магнитными явлениями в природе, в лаборатории, на производстве показывают, что действие магнитного поля на различные объекты. Магни́тное по́ле — силовое поле, действующее на движущиеся электрические заряды и на тела, обладающие магнитным моментом, независимо. Nov 25, 2004 - Магнитное поле Земли. Механизм возникновения, предложения по его экспериментальной проверке и использованию. Существует ряд. Тут найдется полное раскрытие темы. Магнитное поле. Другие рефераты.
Земля (З) вращается вокруг своей оси N-S с угловой скоростью ω. Земля имеет магнитное поле, северный полюс которого находится на южном географическом полюсе. Чтобы получить магнитное поле такого направления, вокруг земного шара, в плоскости перпендикулярной оси вращения Земли, должен существовать устойчивый токовый слой с током I З.Назовем его током Земли. Следовательно, над поверхностью Земли должен существовать проводящий слой, по которому должен замыкаться ток I З.Такой слой существует – это ионосфера. Рассмотрим каким образом может возникануть направленный ток I З в ионосфере.
Солнце, в результате ядерных реакций протекающих в нем, излучает в окружающее пространство огромное количество заряженных частиц больших энергий (энергия частиц солнечного ветра ≈10 27.10 29эрг/с) – так называемый солнечный ветер. По составу солнечный ветер содержит, главным образом, протоны, электроны, немного ядер гелия, ионов кислорода, кремния, серы, железа 1. Частицы образующие солнечный ветер, обладающие массой и зарядом, увлекаются верхними слоями атмосферы в сторону вращения Земли. Таким образом, вокруг Земли образуется направленный поток электронов, движущихся в сторону вращения Земли. Электрон – это заряженная частица, а направленное движение заряженных частиц есть не что иное, как электрический ток. За направление тока принято направление противоположное движению электронов, которое совпадает с направлением тока I З.Таким образом, существует ток I З, вызванный направленным круговым движением частиц солнечного ветра, увлекаемых круговым движением Земли.
В результате наличия тока I З возбуждается магнитное поле Земли Ф З. Относительно Земли солнечный ветер представляет собой поток заряженных частиц постоянного направления, а это не что иное, как электрический ток. Назовем его током Солнца I С.Согласно определению направления тока он направлен в сторону, противоположную движению отрицательно заряженных частиц, т.е. От Земли к Солнцу. Рассмотрим взаимодействие тока Солнца I С с возбужденным магнитным полем земли. В результате такого взаимодействия на Землю действует вращающий момент М З, направленный в сторону вращения Земли.
Таким образом, Земля относительно солнечного ветра (I С) проявляет себя аналогично двигателю постоянного тока с самовозбуждением. Источником энергии (генератором) в данном случае является Солнце.
Следует отметить дополнительно, что магнитный поток, вызванный током солнечного ветра I С, пронизывает вращающийся вместе с Землей поток раскаленной лавы внутри нее. В результате взаимодействия поля I С и потока раскаленной лавы в ней наводится электродвижущая сила, под действием которой течет ток, который так же создает магнитное поле. Вследствие этого магнитное поле Земли является результирующим полем от взаимодействия тока I С и тока лавы. Поскольку и магнитное поле, и вращающий момент, действующий на землю, зависят от тока Солнца, а последний от степени солнечной активности, то при увеличении солнечной активности должен увеличиваться вращающий момент, действующий на Землю и увеличиваться скорость ее вращения. Реально существующая картина магнитного поля Земли зависит не только от конфигурации токового слоя, но и от магнитных свойств земной коры, а так же от относительного расположения магнитных аномалий. Здесь можно провести аналогию с контуром с током при наличии ферромагнитного сердечника и без него. Известно, что ферромагнитный сердечник не только меняет конфигурацию магнитного поля, но и значительно усиливает его.
Токовый слой Земли постоянно подпитывается электронами солнечного ветра. Таким образом, в результате наличия свободного токового слоя, обусловленного электронами солнечного ветра, земной шар вместе с атмосферой и ионосферой, в настоящее время должен иметь отрицательный некомпенсированный заряд. Токовый слой Земли, в значительной степени, определяет протекание электрических процессов в атмосфере (грозы, полярные сияния, огни «святого Эльма»). Замечено, что при извержении вулканов значительно активизируются электрические процессы в атмосфере. Данное явление можно объяснить следующим.
При извержении вулкана выбрасывается столб раскаленных газов (плазмы). Конвективное движение раскаленных газов замыкает токовый слой ионосферы с поверхностью Земли.
Таким образом, появляется ток утечки, который активизирует электрические процессы при извержениях. Предложенная гипотеза, в противовес теории токовых слоев в жидком ядре, может быть проверена на практике. Подтверждение предложенной гипотезы позволит уточнить и расширить наши знания о механизме магнитного поля Земли и других планет, позволит объяснить природу сил и моментов, поддерживающих вращение Земли вокруг своей оси. Схема экспериментальной установки: Iз – токовый слой земли Земли; Iк – ток в искусственном параллельном контуре; ПЗ – поверхность Земли; ДЛЭ – длинная линия электропередачи; СК – соединитель концов линии с токовым слоем; ИП – измерительный прибор. Для экспериментальной проверки гипотезы предлагается создать искусственный контур, расположенный параллельно токовому слою Земли (рис.2).
В качестве параллельного контура можно использовать длинную линию электропередачи, идущую, преимущественно, в направлении восток-запад. Концы длинной линии должны быть соединены или приближены к токовому слою Земли. В качестве соединителей предполагается использовать столб плазмы, например, струю газов реактивного двигателя или воздушные шары, соединенные проводником с концами длинной линии.
Таким образом, предполагается зарегистрировать измерительным прибором величину и направление тока в искусственном параллельном контуре. Практическое подтверждение высказанных предположений позволит объяснить взаимосвязь электромагнитных процессов в системе Солнце-Земля и обеспечит возможность разработки мощных энергетических установок использующих энергию Солнца. Список литературы Для подготовки данной работы были использованы материалы с сайта Дата добавления.
Реферат: Магнитное поле Земли Межпланетное магнитное поле Если бы межпланетное пространство было вакуумом, то единственными магнитными полями в нем могли быть лишь поля Солнца и планет, а также поле галактического происхождения, которое простирается вдоль спиральных ветвей нашей Галактики. При этом поля Солнца и планет в межпланетном пространстве были бы крайне слабы.
На самом деле межпланетное пространство не является вакуумом, а заполнено ионизованным газом, испускаемым Солнцем (солнечным ветром ). Концентрация этого газа 1-10 см-3, типичные величины скоростей между 300 и 800 км/с, температура близка к 105 К (напомним, что температура короны 2×106 К). Поскольку газ солнечного ветра почти полностью ионизованный, то его электропроводность очень велика (102 Мо/см). Проводники с высокой проводимостью имеют особенность сопротивляться изменению магнитного поля. Другими словами, проникновение магнитного поля в такой проводник невозможно. Движущийся солнечный ветер будет уносить солнечное магнитное поле в межпланетное пространство.
Так как поток плазмы начинается в короне Солнца (или ниже нее), то в солнечном ветре имеются магнитные поля. Величина магнитных полей на Солнце составляет от 1 до 1000 Гс. Поток солнечной плазмы «выметает» из внутренней части солнечной системы планетные и галактические магнитные поля. Солнечный ветер будет «гнать» галактическое поле перед собой до тех пор, пока не будет достигнуто динамическое равновесие между давлением солнечного ветра и давлением галактической среды.
Это происходит на расстоянии от 10 до 100 астрономических единиц (а. Следовательно, межпланетное пространство ограничено полостью в галактической среде, размеры которой дают верхнюю границу величины солнечно-межпланетного магнитного поля. Силовые линии магнитного поля солнечного ветра простираются в межпланетное пространство за орбиту Земли, при этом один их конец находится на Солнце. Характеристики солнечного ветра и межпланетных магнитных полей нерегулярны и асимметричны из-за волокнистой структуры короны, нерегулярностей магнитных полей в фотосфере и т. Радиальная компонента межпланетного магнитного поля Вr должна уменьшаться обратно пропорционально квадрату расстояния от Солнца (т.
Она может быть выражена через величину радиальной компоненты поля на поверхности Солнца. Если на Солнце магнитное поле равно Br0= 0,5 Гс, то на расстоянии 1 а.е. Истечение плазмы из Солнца происходит таким образом, что плазма просто отталкивает силовые линии поля и покидает Солнце в радиальном направлении.
Если бы Солнце не вращалось, то такое радиальное истечение плазмы привело бы к тому, что силовые линии магнитного поля были бы также радиальны и параллельны движению частиц. Поскольку Солнце вращается, то магнитное поле приобретает поперечную компоненту (в плоскостях, перпендикулярных оси вращения) и силовые линии магнитного поля становятся спиральными.
Направление спирального поля можно оценить, если предположить, что один конец силовой линии закреплен на Солнце и вращается вместе с ним. Тогда частицы, которые непрерывно испускаются данной областью вращающейся короны, будут двигаться в экваториальной плоскости по спиралям Архимеда. (Это напоминает работу вращающегося поливального устройства).
Таким образом, межпланетное магнитное поле приобретает и поперечную компоненту Bj. Можно оценить, что вблизи орбиты Земли угол спирали с радиусом составляет около 45° и радиальная и поперечная компоненты Bj =Br =1g. Первые измерения магнитных полей за пределами магнитосферы Земли были проведены на спутнике «Пионер-1» в октябре 1958 г. Они позволили установить существование и положение области перехода от внешней части геомагнитного поля к межпланетному пространству. Эти результаты были подтверждены измерениями на других ИСЗ.
Экспериментально было установлено, что имеются значительные нерегулярности, наложенные на спиральное межпланетное поле. Спутниковые измерения межпланетного магнитного поля выявили тесную связь между величиной магнитного поля, перпендикулярного оси вращения аппарата (поперечной составляющей В^ ), и значением магнитного индекса К или А. Перед началом и в период геомагнитных бурь величина В^ увеличивается на порядок и приобретает более нерегулярный характер, чем в спокойные периоды.
Это объясняется тем, что плазма из возмущенных областей на Солнце может уносить в межпланетное пространство более интенсивные и более нерегулярные поля. А это приводит к появлению нерегулярностей в спокойном межпланетном поле, что подтверждают измерения на спутниках. Обнаружена также прямая корреляция между изменениями межпланетного поля по данным спутников и солнечной активностью.
По этим данным была оценена средняя скорость распространения возмущения, равная 1000км/с. Вектор межпланетного магнитного поля имеет радиальную составляющую Вr, направленную или от Солнца (знак +), или к Солнцу (знак –). Межпланетное пространство разделено на чередующиеся спиральные секторы, в каждом из которых радиальная компонента направлена либо наружу, либо вовнутрь. В пределах каждого сектора скорость солнечного ветра и плотность частиц систематически изменяются.
Наблюдения с помощью ракет показывают, что оба параметра резко увеличиваются на границе сектора. В конце второго дня после прохождения границы сектора плотность очень быстро, а затем, через два или три дня, медленно начинает расти. Скорость солнечного ветра уменьшается медленно на второй или третий день после достижения пика. Секторная структура и отмеченные вариации скорости и плотности тесно связаны с магнитосферными возмущениями.
Секторная структура довольно устойчива, поэтому вся структура потока вращается с Солнцем по крайней мере в течение нескольких солнечных оборотов, проходя над Землей приблизительно через каждые 27 дней. Магнитное поле земли Английский ученый Уильям Гильберт, придворный врач королевы Елизаветы, в 1600 г. Впервые показал, что Земля является магнитом, ось которого не совпадает с осью вращения Земли. Следовательно, вокруг Земли, как и около любого магнита, существует магнитное поле. Геллибранд обнаружил, что поле земного магнита медленно меняется, а Эдмунд Галлей провел первую в мире магнитную съемку океанов и создал первые мировые магнитные карты (1702 г.). Гаусс провел сферический гармонический анализ магнитного поля Земли.
Он создал первую в мире магнитную обсерваторию в Гёттингене. О распределении силовых линий магнитного дипольного поля и о магнитных полюсах наклонения Пс, Пю можно судить по рисунку.
Составляющие геомагнитного поля определены следующим образом. В любой точке О вектор напряженности магнитного поля В может быть разложен на составляющие, как это показано на рисунке. Можно выбрать в качестве составляющих абсолютную величину полного вектора В (модуль) и два угла: D и I.
Угол D образован направлением на север и горизонтальной составляющей вектора В, т. Н; I – это угол между В и Н, Угол D считается положительным, если Н отклоняется к востоку, а I положительно при отклонении В вниз от горизонтальной плоскости. Величина D называется магнитным склонением, а I – наклонением. Вертикальная плоскость, которая проходит через Н, именуется местной магнитной меридиональной плоскостью.
Используется также разложение В на северную (X) и восточную (Y) составляющие вектора Н. Третьей служит вертикальная составляющая Z, которая считается положительной, если В направлено вниз. Напряженности B, H, Z, X, Y измеряются в гауссах (Гс) или гаммах (g). Углы D и I измеряются в дуговых градусах и минутах. Все приведенные семь величин В, Н, D, I, X, У, Z называются магнитными элементами. Соотношения между ними ясны из рисунка. H=B cos I, Z=B sin I=H tg I, X=H cos D, Y=H sin D, X2 +Y2 =H2 X2 +Y2 +Z2 =H2 +Z2 =B2 Ясно, что для полного описания вектора В достаточно иметь три независимых элемента.
По ним могут быть рассчитаны все остальные. Обычная стрелка магнитного компаса уравновешивается, вращаясь горизонтально на вертикальной оси. В северной полусфере Земли почти везде северный полюс магнитной стрелки направлен вниз (т. I положительно), а в южном полушарии I отрицательно, поскольку вниз направлен южный полюс стрелки. Линия, которая разделяет области положительного и отрицательного I, называется магнитным экватором или экватором наклонения.
Естественно, что на ней I=0, т. Магнитная стрелка в любой точке на этой кривой располагается горизонтально.
На полюсах магнитного наклонения горизонтальная компонента полного вектора В исчезает и магнитная стрелка устанавливается вертикально. Эти точки еще называют полюсами наклонения. Таких точек в принципе может быть несколько.
Две основные из них обычно называются магнитными полюсами Земли. Они расположены в Арктике и в Антарктиде.
Координаты их 75°,6. И 66°,3 ю.ш., 141°. Местоположение магнитных полюсов не является постоянным. Приведенные выше координаты относятся к эпохе 1965 г. Чтобы определить азимут вектора Н, нужно выбрать некоторое нулевое направление, от которого можно отсчитывать магнитное склонение D.
За такое направление принято направление на северный географический полюс. Таким образом, D определяется относительно условного направления, поскольку ось вращения Земли не связана непосредственно с конфигурацией геомагнитного поля. То же относится и к элементам Х и Y. Поэтому D, X, Y называют относительными магнитными элементами, тогда как H, Z и I именуются собственными магнитными элементами. Несколько слов о магнитных картах. Обычно через каждые 5 лет распределение магнитного поля на поверхности Земли представляется магнитными картами трех или более магнитных элементов. На каждой из таких карт проводятся изолинии, вдоль которых данный элемент имеет постоянную величину.
Линии равного склонения D называются изогонами, наклонения I – изоклинами, величины полной силы В – изодинамическими линиями или изодинами. Изомагнитные линии элементов H, Z, Х и Y называются соответственно изолиниями горизонтальной, вертикальной, северной или восточной компонент. Программа для составления графиков работы. Направление оси магнитного диполя практически не меняется с 1829 г. При этом магнитный момент диполя систематически уменьшался. Его уменьшение может быть аппроксимировано выражением m=(15,77-0,003951t)×1025 Гс×см3, где t — время в годах, отсчитываемое вперед пли назад от 1900 г. По этой формуле можно рассчитать, что если уменьшение магнитного момента будет продолжаться с такой же скоростью, то к 3991 г.
Магнитный момент станет равным нулю. Мы будем постоянно иметь дело с геомагнитными силовыми линиями, а также различного рода координатами. Геомагнитные дипольные координаты — это дополнение к широте q’ и восточной долготе j'. Они определяются относительно полярной оси и нулевого меридиана.
Если точка Р имеет географические координаты q и j, то геомагнитные координаты могут быть вычислены по следующим формулам: cosq’=-cosq cosq0 — sinq sinq0 cos(j-j0), sinj’=sinq × sin(j-j0) cosecq’. Магнитное склонение дипольного поля Y – это угол, образованный магнитным и географическим меридианами в точке Р. Он определяется из выражения sin(–y)= sinq0(sin(j-j0)/sinq’) Существуют таблицы, которые содержат геомагнитные координаты сетки точек, расположенных через ровные угловые интервалы в географических координатах q и j. Имеются также сетки географических и геомагнитных координат. По этим сеткам можно легко найти геомагнитные координаты любой точки с известными географическими координатами, и наоборот. Обратный переход от геомагнитных координат к географическим можно произвести по формулам cosq=cosq’ × cosq0 – sinq’ × sinq0cosj’ Если рассматривать только дипольную часть геомагнитного поля в любой точке Р с геомагнитными координатами q’ и j', то потенциал V1, описываемый членами первого порядка, равен V1 = –m(cosq/r2 ) Tак как V1 не зависит от долготы, то восточная компонента дипольного поля В равна нулю.
Северная Я и вертикальная Z составляющие поля получаются равными H=m(sinq’/r3 )=H0(a/r)3 sinq’, Z=2m(cosq’/r3 )=Z0(a/r)3 cosq’; Z0=2H0 где Z0и Н0– максимальные значения Z и H на геоцентрической сфере радиуса а, содержащей точку Р. H0соответствует полю на геомагнитном экваторе, а Z0– на северном полюсе.
На южном полюсе Z= –Z0. Наклонение I и магнитную широту l' можно определить из следующих уравнений: tgI=(Z/H)2ctgq’, tgl'=1/2tgI. Каждая силовая линия дипольного поля лежит в плоскости геомагнитного меридиана. Ее уравнение r=re ×sin2 q’ где re – радиальное расстояние, на котором данная силовая линия пересекает плоскость геомагнитного экватора, с величиной поля равной m/re3 Величину re, можно принять за параметр, определяющий силовую линию. Напряженность поля в точке Р можно определить через параметр силовой линии B=ÖH2 +Z2 =mc/r3 =m/re3 × c/sin6q’=Be c/sin6q’, Bc =m/re3 Представление геомагнитного поля центральным диполем только лишь первое весьма грубое приближение. Используя более высокие члены разложения по сферическим гармоникам, можно построить геомагнитную систему координат, лучшую, чем дипольная. Так, если использовать наряду с дипольными еще пять старших сферических гармонических членов и рассчитать геометрическое место точек пересечения земной поверхности садовыми линиями, которые располагаются в экваториальной плоскости на расстоянии пяти-шести радиусов Земли, то полученная таким образом линия хорошо совпадает с зоной полярных сияний.
Было также показано, что если проектировать по силовым линиям на поверхность Земли лежащие в плоскости экватора геоцентрические окружности с радиусами Lc =a cosec2 qc, то полученные таким путем широты qc упорядочивают явления в полярной шапке лучше, чем дипольные геомагнитные широты. Часто используют «исправленные» геомагнитные координаты при описании различных авроральных явлений и поглощения космического радиоизлучения в полярной шапке. Они были рассчитаны Хакурой на основе исследований Халтквиста. Дальнейшее усовершенствование этих «исправленных» геомагнитных координат выполнил Густавсон, использовав коэффициенты разложения поля на эпоху 1965 г. При объяснении некоторых явлений, которые связаны с суточными вариациями полярных сияний, было введено понятие геомагнитных полуночи и полудня. Затем появилось и более общее понятие геомагнитного времени. Если данная точка определена географическими координатами q и j и геомагнитными координатами q' и j', то геомагнитное время может быть выражено соотношением 15°t’=j’H – j’.
Здесь j’H – геомагнитная долгота полудня в данный момент времени. Геомагнитное время t' отсчитывается от геомагнитного полудня и относительно истинного положения Солнца Н. Используя схему определения «геомагнитного времени» в системе геомагнитных координат, приведем пример его расчета. Если в Гринвиче истинное время tG, в точке Р местное истинное время составит tG +j/15°, то географическая долгота истинного положения Солнца будет 180° – 15° tG.
Отсюда, учитывая также полярный угол этого положения (который определяется как 90°– d, где d обозначает склонение Солнца), геомагнитную долготу j’H можно рассчитать по приведенным выше формулам. Гринвичское среднее время в этот момент будет tG – e, где е обозначает «уравнение времени». Вернемся к рисунку. Там показан круг с угловым радиусом 90°– d, который описывает положение Солнца на земной поверхности.
Дуга большого круга, проведенная через точку Р и геомагнитный полюс В, пересекает этот круг в точках H’n и H’m, которые указывают положение Солнца соответственно в моменты геомагнитного полудня и геомагнитной полуночи точки Р. Эти моменты зависят от широты точки Р. Положения Солнца в местные истинные полдень и полночь указаны точками Hn и Нm соответственно. Когда d положительно (лето в северном полушарии), то утренняя половина геомагнитных суток не равна вечерней. В высоких широтах геомагнитное время может очень сильно отличаться от истинного или среднего времени в течение большей части суток.
Говоря о времени и системах координат, скажем еще об учете эксцентричности магнитного диполя. Эксцентричный диполь медленно дрейфует наружу ( к северу и к западу) с 1836 г. Экваториальную плоскость он пересел?
Примерно в 1862 г. Его траектория по радиальной проекции расположена в районе о-ва Гилберта в Тихом океане. Ось эксцентрического диполя, проведенная через точку О' параллельно АВ, пересекает поверхность Земли в точках В' и A, которые расположены соответственно вблизи В и А. В этих точках наклонение поля эксцентрического диполя не равно нулю.
Полоса наклонения поля эксцентрического диполя (точки В и А) находится в меридиональной плоскости ВО'А несколько дальше от точек В и А. Западная долгота этой плоскости в геомагнитной системе координат возросла с 110° в 1836 г. До 143° в 1965 г.
Углы ВОВ' и АОА' за этот же промежуток времени увеличились с 2,4° до 40°. Углы ВОВ' и АОА', как правило, не равны друг другу: в 1836 г. Они составляли 7,2° и 5,5°, а в 1965 г.- 11,8° та. Геомагнитные индексы.
Геомагнитная активность описывается различными геомагнитными индексами, используемыми в геомагнетизме, физике ионосферы, солнечной физике, физике полярных сияний. Магнитные обсерватории всего мира посылают свои индексы в Международный центр Де Бильт (Нидерланды), который связан с Постоянной Службой геомагнитных индексов в Гёттингене (ФРГ). Эти локальные индексы — основа планетарных индексов. Остановимся на них подробнее.
Реферат По Теме Магнитное Поле
Индексы С и С i. Магнитограмма на каждой обсерватории за каждые сутки (начало суток отсчитывается от 00 ч гринвичского времени) оценивается по степени возмущенности магнитного поля баллами 0, 1 или 2.
Баллы выбираются простым просмотром магнитограмм. Это и есть индекс С для данных суток данной обсерватории. Затем индексы С поступают в единый центр и там усредняются с точностью до 0,1 для каждых суток. Так определяется значение международного ежедневного индекса Сi. Индексы Ci имеют градации через 0,1, в результате чего получается 21-балльная классификация гринвичских суток (от 0,0 для спокойных дней до 2,0 для возмущенных).
Чаще всего в анализах используются индексы k и kр. Эти индексы определяются для 3-часовых интервалов, т. Имеется восемь значений индексов для каждых гринвичских суток. При определении k-индексов берутся три компоненты магнитного поля: Н, D и Z.
Для каждой компоненты оценивается амплитуда r в течение 3-часового интервала. Наибольшая из трех амплитуд в каждом временном интервале употребляется для вывода k-индекса.
Составлены таблицы, дающие пределы r, определяемые полулогарифмической шкалой, для каждой обсерватории и для каждой из 10 величин k (0,1. Эта связь между r и k выбирается такой, чтобы весь диапазон изменения геомагнитной активности, от самых спокойных условий до самой мощной бури, можно было выразить в шкале, состоящей из одной цифры.
Нижний предел r для k=9 в зависимости от общего уровня геомагнитной активности является большим или меньшим. В зоне полярных сияний этот предел равен 2500g, тогда как для обсерваторий низких широт 300g. Так определяется местный (локальный) индекс k. Планетарный индекс k или kp – индекс Бартельса служат для выражения характеристики планетарной геомагнитной активности.
Исправленные и стандартизованные значения k подготавливаются Постоянной службой в Гёттингене для каждой из 12 выбранных обсерваторий, расположенных в северном и южном полушариях. Среднее значение k-величин этих 12 обсерваторий и дает величину kp -индекса. Он называется планетарным трехчасовым индексом и выражается в шкале с точностью до 1 /3: 00, 0+, 1–, 1о, 1+, 2-, 2о, 2+, 3-, 3о, 3+ 9-, 9о, 9+. Всего получится 28 баллов.
Ежедневный индекс Skр получается суммированием величин за 8 3-х часовых интервалов суток. Kр -индекс обладает полулогарифмической связью с амплитудой r. Если перевести kp в линейную шкалу, то получится ар -индекс.
Имеется таблица для пересчета индексов kp в индексы аp. Сумма восьми величин аp для каждого дня дает ежедневный Aр -индекс. На основании индексов Ар можно рассчитать индексы Ср, которые имеют величины от 0,0 до 2,0 через 0,1 (всего 21 величины). Имеется таблица пересчета Ар в Ср.
Драйвер на монитор samsung 2033sn. На основании индекса Ср рассчитывается индекс Сg (всего 10 величин: 0,1, 9). Значения Ср разбиты на диапазоны, каждый из которых соответствует определенной величине С9 (0,0-0,1; 0,2-0,3; 0,4-0,5; 0,6-0,7; 0,8-0,9; 1,0-1,1; 1,2-1,4; 1,5-1,8; 1,9; 2,0-2,5).
Описанные индексы геомагнитного поля либо не учитывают, либо недостаточно учитывают структуру составляющих магнитного поля и его частей. Поэтому они обычно не используются для детальных количественных исследований.
Существуют и другие, более детальные индексы. Dst -индекс дает среднее по долготе уменьшение горизонтальной составляющей поля на низких широтах в единицах g, которое пропорционально полной кинетической энергии инжектированных частиц, захваченных в радиационном поясе. Dst -индекс выражает амплитуду первого коэффициента гармонического ряда, который получается при Фурье-разложении поля главной фазы магнитной бури как функции геомагнитной долготы. Индексы АЕ, AL и AU разработаны для получения интенсивности авроральной электроструи в g. Они позволяют контролировать интенсивность полярной электроструи по вариациям горизонтальной компоненты магнитного поля на обсерваториях зоны полярных сияний и равномерно расположенных по долготе.
АE-индекс получается суперпозицией этих записей. Когда «произведена суперпозиция записей магнитного поля, то расстояние между верхней и нижней кривыми и есть AE-индекс. Верхняя огибающая дает АU-индекс, а нижняя огибающая – AL-индекс.
Реферат На Тему Магнитное Поле И Его Графическое Изображение
Эти индексы можно получить в неограниченном разрешении во времени. Но обычно достаточно иметь их значение через 2,5 мин.
Реферат На Тему Магнитное Поле Планет Солнечной Системы
Солнечный ветер – истечение плазмы солнечной короны в межпланетное пространство. На уровне орбиты Земли средняя скорость частиц Солнечного ветра (протонов и электронов) около 400 км/с, число частиц – несколько десятков в 1см3. Астрономическая единица длины – единица расстояний в астрономии, равная среднему расстоянию Земли от Солнца (1а. Е.=149,6 млн. Азимут – угол (А) между плоскостью меридиана точки наблюдения и вертикальной плоскостью, проходящей через эту точку и наблюдаемый объект. Азимут – одна из координат системы горизонтальных координат в астрономии.